Tracking monotonically advancing boundaries in image sequences using graph cuts and recursive kernel shape priors

Joshua Chang, KC Brennan, Tom Chou

Abstract—We introduce a probabilistic computer vision technique to track monotonically advancing boundaries of objects within image sequences. Our method incorporates a novel technique for including statistical prior shape information into graph-cut based segmentation, with the aid of a majorization-minimization algorithm. Extension of segmentation from single images to image sequences then follows naturally using sequential Bayesian estimation. Our methodology is applied to two unrelated sets of real biomedical imaging data, and a set of synthetic images. Our results are shown to be superior to manual segmentation.

Index Terms—Contour tracking, Level set method, Particle filter, Gaussian Process, Bayesian Vision, Graph cut, Segmentation, Shape Prior, Shape Statistics, Cortical Spreading Depression, Wound healing assay, Optical Intrinsic Signal Imaging, Gaussian Markov Random Fields

I. INTRODUCTION

Boundary tracking is a common problem in many imaging applications, particularly in biomedical imaging where the dynamics of a wavefront or the boundary of a region of interest provide insights into the underlying physiological processes. Many processes are characterized by monotonic boundary movement, where a boundary crosses each point at most once. In biology and medicine, examples of such moving boundaries include cardiac impulse waves [1], tumors [2], extent of cerebral infarct [3], glial cell signal waves [4], and spreading depression waves [5].

The motion of monotonically advancing boundaries is described by the eikonal equation [6, 7]

\[
V(s) |\nabla T(s)| = 1,
\]

where \(V(s) : \mathbb{R}^d \rightarrow \mathbb{R}^+ \) is the speed of the interface along its normal when it crosses a point \(s \in \mathbb{R}^d \), and \(T(s) : \mathbb{R}^d \rightarrow \mathbb{R}^+ \) is the time when the boundary first reaches \(s \). For collapsing boundaries, \(V(s) \) is strictly negative, and \(-V(s) |\nabla T(s)| = 1\). Computationally, several algorithms for approximating solutions to the eikonal equation exist, notably the fast marching method [6], a quick \(\mathcal{O}(N \log N) \) solver. This method has an interpretation as a special boundary value case of the more general initial value level set method [7] for describing boundary motion.

The level set method, as proposed by Osher and Sethian [8], is another approach to computing boundary motion. It describes the evolution in time \(t \) of a closed hyper-surface \(\Gamma(t) \) of dimension \(d - 1 \) that bounds an evolving region \(\Omega(t) \subset \mathbb{R}^d \). Instead of directly tracking the hyper-surface \(\Gamma(t) \), one embeds \(\Gamma(t) \) in an object of higher dimension known as a level set. The interface is embedded as the zero-level set of a function \(\phi_{\Omega(t)}(s) : \mathbb{R}^d \rightarrow \mathbb{R} \), which for every \(s \in \mathbb{R}^d \) is the signed Euclidean distance from \(s \) to the boundary of \(\Omega(t) \). The level set equation

\[
\frac{\partial \phi_{\Omega}}{\partial t} + V(s) |\nabla \phi_{\Omega}| = 0
\]

then describes the interface undergoing movement with speed \(V(s) \) along its normal vectors. Computationally, one typically discretizes the level set function (Fig 1) and solves Eq (2) using finite differences. The main advantages of this approach are its freedom from parameters, and its ease of handling topological changes, especially in comparison to Lagrangian methods of curve evolution.

Both fast marching and level set methods have been useful for computationally describing moving interfaces in a variety of physical applications; the speed of the interface encodes the interesting physics of the observed process, and can be a function of any number of observed or unobserved covariates.
Bayesian filtering for boundary detection can be thought of about image segmentation, the labeling of regions in images. According to the system dynamics to construct the prediction of the next state acts as the next observation comes in. The recursive estimation is weighted against evidence of the boundary in the image sequence within a Bayesian filtering framework.

We provide three applications of our method. First, we identify a boundary in a synthetic image sequence, validating our method against a “ground truth.” Second, we track cortical spreading depression waves in in-vivo image sequences. Cortical spreading depression (CSD) arises in many pathologies such as stroke, brain trauma, epilepsy, and migraine. It is characterized by a slow-moving, concentric, traveling wave of runaway excitation propagating through contiguous regions of brain gray-matter. Lastly, we demonstrate the ability of our method to detect the boundary of a collapsing unhealed wound region. Here, a “wound” is scratched into a monolayer of cultured cells and the closing wound edge formed by the leading cells is tracked.

A. Related prior work in literature

There has been much work in tracking boundary motion in image sequences, using a variety of methods. One method is the use of level set-based active contours on the gradient field of image sequences [14, 15, 16]. In these methods, the minimum of a phenomenologically defined energy defines the contour positions. Other successful methods have utilized statistical models in order to define energies. Mansouri [17] developed a Bayesian tracking method where motion information is not computed. Many other authors have developed variants of Kalman filtering [18, 19, 20], and more generally, Bayesian filtering [21, 22, 23, 24].

Bayesian filtering is a sequential technique for estimating an unknown probability density as it evolves in time [24]. When the underlying state space is first-order Markovian, Bayesian filtering amounts to recursively predicting the next state given the observations up to the current state, and updating the prediction of the next state as the next observation comes in. The prediction of the next state acts as a prior. This prediction step entails propagating the probability distribution for the current state through the system dynamics (generally nonlinearly) to generate a predictive distribution for the next state. A popular variant of Bayesian filtering is the particle filter [25]. In the particle filter, one draws a weighted sample of states from the current state posterior, and then propagates each sample state according to the system dynamics to construct the prediction distribution.

We now take a moment to provide some background about image segmentation, the labeling of regions in images. Bayesian filtering for boundary detection can be thought of as recursive segmentation regularized by a motion model. To segment a closed subset of a region into a motion model, Mumford and Shah [26] proposed an optimization problem. Suppose that an image \(I : S \subset \mathbb{R}^2 \rightarrow \mathbb{R} \) contains pixels that represent two regions, foreground (\(\Omega \)), and background (\(\Delta = S \setminus \Omega \)), separated by a closed boundary \(\Gamma = \partial \Omega \). The optimal segmentation is the construction of a piecewise-smooth image \(I_0 \) that is found by minimizing an energy functional involving pixel-mismatches and a boundary-length penalty. Motivated by the idea of minimizing this functional, a class of methods known loosely as active contour methods were born [27]. Within this class of methods, level set approaches have achieved possibly the most success. Chan and Vese [28] were among the first to employ the level set method to minimize a Mumford-Shah like energy, where they used level sets to describe a gradient descent minimization. These methods, however, are plagued by slow convergence, and by reliance on the placement of an initial labeling.

Recently, computer vision researchers have employed graph-cuts based optimization to solve the segmentation problem. In this method, a segmentation corresponds to a two-coloring of a graph, where pixels constitute nodes with coloring representing membership to either the foreground or background sets. This coloring is typically found in low order polynomial time using a maximum-flow/minimum-cut algorithm [29]. However, graph cut methods can be applied only on a restricted class of energies [30, 31]. Despite much work in the field, it is challenging to incorporate prior knowledge about shapes into an energy that is minimizable within the graph-cuts framework. For static image segmentation of general shapes, popular priors in use are the star-shaped prior [32], elliptical shape prior [33], and the compact shape prior [34]. For more application-specific segmentation, where the shape is known, researchers have expressed shapes in kernel principal component space [35, 36], where parameterized shapes are embedded in a model of an image.
reduced to their eigenspace, as indicator functions [57], or implicitly embedded in level sets [38, 39, 40].

Shape priors are useful for tracking applications since they can represent models for the motion of objects in an image sequence. Dynamical and statistical shape priors are particularly useful since they can account for uncertainty of an object’s motion. There are many strategies for modeling this motion and generating associated shape priors. One approach does not seek to model the motion of the object, but instead relies on propagation of contours by gradient flow [14, 15]. Such methods however are incapable of detecting large changes in a boundary that correspond to shape changes, and are computationally expensive due to the reliance on solving a PDE.

Another common approach is to identify features of an object to track from a set of training images. For example, PCA-based methods [41] model deformation of features learned from a set of training templates. Other studies directly parameterize a particular target object [19], or contour [21, 22]. All of the aforementioned tracking methods have had success in many tracking applications, but they are not suitable for use in our desired applications without major modifications. These methods are restrictive in that they are intended to track objects that are expected to retain their overall structure in an image sequence.

B. Motivation for our method

In identifying the motion of a boundary evolving according to the eikonal equation, we seek to solve a subtly different tracking problem. As a boundary evolves, the region enclosed by the boundary need not retain any particular shape (Fig 3). Furthermore, it is not sufficient to only know the approximate location of the object, we seek precise discrimination of the object’s boundaries. Finally, we are also motivated by the goal of online estimation, where we do not wish to rely on relatively slow techniques such as PDE-based energy minimization.

To solve these problems, our method introduces the concept of using recursive statistical shape priors in graph cuts segmentation. With the aid of a majorization-minimization step, we show how one can iteratively use graph cuts to arrive at a segmentation that takes into consideration an ensemble of predicted interface positions. This ensemble is constructed by modeling the speed of the interface using its observed history. The predicted ensemble is weighted against evidence of the interface position in the image, providing regularization that makes our method robust to real-world noise encountered in biomedical imaging.

II. MATHEMATICAL APPROACH

Our overall approach is to develop a recursive Bayesian filter to regularize segmentation of the evolving boundary. Our filter stochastically samples the possible motion of the boundary by evolving it against speeds sampled from a stochastic autoregressive model, whose parameters we recursively infer. The boundary is embedded implicitly as level sets in the arrival time function of Eq [1] and is propagated by the fast marching method. For the motion of the interface, we make only the loose assumption that its speed is locally correlated in space.

Given a set of interface positions \(\{ \Omega_k \}_{k=0}^K \) measured at times \(\{ t_k \}_{k=0}^K \), we calculate the past speed of the interface by bilinearly interpolating its past arrival times over the discrete image lattice, and then solving the eikonal equation (Eq 1) using second order upwind finite differences [42]. Denoting a vector containing these past speeds \(V_0 \), we predict future speeds \(V \) using our stochastic model. Propagation of the interface against stochastic samples of \(V \) provides us with estimates of the future position of the interface.

In this section we will restrict our discussion to strictly positive speeds (advancing fronts). The same method applies for strictly negative speeds (collapsing fronts).

A. Motion prediction by Gaussian Process modeling

We use a Gaussian Markov Random Field (GMRF) to model the speed. With it, we can represent the spatial correlation of the speed of the boundary, where we expect speeds of the interface at neighboring locations to be close. In essence, we use a GMRF to penalize large spatial variations in our predicted speeds.

A GMRF is a stochastic field that follows a multivariate Gaussian distribution, and is Markovian with respect to a graph. The random variates of a GMRF constitute the nodes of a graph \(G \), with covariance matrix \(\Sigma \) such that an entry in the precision matrix \(Q = \Sigma^{-1} \) is nonzero if and only if there is an edge connecting the two corresponding random variates. A GMRF has a sparse precision matrix in that its corresponding graph is not complete – we assume that we can predict the speed at a position given only the speeds at nearby locations. GMRFs have been shown to approximate arbitrary covariance structures well in practice [43, 44], even when the correlation range is much larger than the size of the Markovian neighborhoods. We say that the speed \(V : \mathbb{R}^2 \rightarrow \mathbb{R}^+ \) of the interface as it crosses over \(s \in \mathbb{R}^d \) is

\[
V(s) = X(s)\beta + \eta(s),
\]

where \(\eta : \mathbb{R}^2 \rightarrow \mathbb{R} \) is a GMRF. Of perhaps most interest, \(X(s) \) is a \(1 \times p \) vector of any known linear predictors whose

Fig. 3. **Examples of monotonic boundary movement.** Shown are stills from three image sequences depicting monotonic boundary motion. Top two rows are cortical spreading depression hemodynamical waves. Bottom row is a wound undergoing healing. The noise characteristics in these images, and rows are cortical spreading depression hemodynamical waves. Bottom row is from three image sequences depicting monotonic boundary motion. Top two sequences. Dynamical and statistical shape priors are particularly useful since they can account for uncertainty of an object’s motion. There are many strategies for modeling this motion and generating associated shape priors. One approach does not seek to model the motion of the object, but instead relies on propagation of contours by gradient flow [14, 15]. Such methods however are incapable of detecting large changes in a boundary that correspond to shape changes, and are computationally expensive due to the reliance on solving a PDE.

Another common approach is to identify features of an object to track from a set of training images. For example, PCA-based methods [41] model deformation of features learned from a set of training templates. Other studies directly parameterize a particular target object [19], or contour [21, 22]. All of the aforementioned tracking methods have had success in many tracking applications, but they are not suitable for use in our desired applications without major modifications. These methods are restrictive in that they are intended to track objects that are expected to retain their overall structure in an image sequence.

B. Motivation for our method

In identifying the motion of a boundary evolving according to the eikonal equation, we seek to solve a subtly different tracking problem. As a boundary evolves, the region enclosed by the boundary need not retain any particular shape (Fig 3). Furthermore, it is not sufficient to only know the approximate location of the object, we seek precise discrimination of the object’s boundaries. Finally, we are also motivated by the goal of online estimation, where we do not wish to rely on relatively slow techniques such as PDE-based energy minimization.

To solve these problems, our method introduces the concept of using recursive statistical shape priors in graph cuts segmentation. With the aid of a majorization-minimization step,
influence is unknown. We determine the influence of these predictors by inferring the $p \times 1$ vector of coefficients β. For example, if one has an anatomical labeling distinguishing two different tissue types in an imaging field, $X_1(s)$ could be an indicator of one of the tissue types. The speed of the interface is then $V(s) = \beta_0 + X_1(s)\beta_1 + \eta(s)$, so that the expected speed of the interface is $\beta_0 + \beta_1$ inside the region, and β_0 outside. Under this construct, it is possible to infer the coefficient β_1, and ascertain if it is distinct from zero, thereby statistically testing whether the interface travels through the two regions at different speeds. It is worthy to note that the predictors X_i are also allowed to be nonlinear functions of any auxiliary variables. It is convenient to infer the GMRF using data from all locations simultaneously, so we define a matrix X to be an $n \times p$ matrix, where each of the n rows corresponds to an observation point (in our case, speed at a particular location), and each row has p entries, corresponding to known predictor variables. Such a matrix is commonly known as a covariate matrix. $X(s)$ refers to the row in X corresponding to point s.

It may be illuminating to write the model in the following hierarchical form

\begin{equation}
V(s) = X(s)\beta + \eta(s) \tag{3}
\end{equation}

\begin{equation}
\eta|\tau^2_\eta \sim \mathcal{N}(0, Q) \tag{4}
\end{equation}

\begin{equation}
\beta, \tau^2_\eta \sim \mathcal{N}(\beta; \beta_0, \tau^2_\eta P) (\tau^2_\eta; a_\eta, b_\eta). \tag{5}
\end{equation}

$\mathcal{N}(x; \mu, \tau^2)$ represents a Gaussian distribution on random variable x with mean μ and precision τ^2. $G(y; a, b)$ represents a statistician’s gamma distribution on random variable y with shape a and rate b. For convenience, throughout this paper we parametrize Gaussian distributions with precisions $\tau^2_\eta = 1/\sigma^2_\eta$ rather than the more commonly encountered variances σ^2_η. Eq 3 states that the speed is a linear composition of the covariates and their associated coefficients, plus a normally distributed spatial noise term with distribution given in Eq 4. Q has entries Q_{ss} that are a function of the distance between two points s_i and s_j, hence it is an $n \times n$ matrix. We set $Q = \tau^2_\eta R$, where R encodes spatial correlation between locations, and τ^2_η is a scalar parameter independent of η. For simplicity we will assume we know R; we use the 5×5 Markovian Gaussian process given by Rue and Tjelmeland [43], to yield a sparse banded R.

In Eq 5 we place the normal-gamma conjugate prior distribution on the parameters β and τ^2_η. The hyperparameters a_η and b_η are set small (0.001) to be weakly informative [45]. P represents the precision of the prior knowledge of β, scaled by τ^2_η. This model bears more than superficial resemblance to common spatial interpolation methods used in geostatistics. In particular, this model can be considered a Bayesian variant of universal kriging [46]. Inference on this model can be performed exactly and analytically as a generalized least squares problem [47]. It is important to note that we desire positive values for speeds $V(s)$. In this model we do not explicitly enforce positivity of V; however, if μ is large enough, as in the applications we discuss, fields with negative values of V have negligible measure. We simply discard any samples of V that have negative values. In this section, we provide the maximum a-posterior estimates for β, and V. Please see the supplementary document for details of the derivations.

Suppose one has a $n \times 1$ vector V_0 of observed speeds, at locations with associated $n \times n$ spatial correlation encoding matrix R_0, and $n \times p$ covariate matrix X_0. Then one may perform maximum-a-posterior inference to predict speeds at unobserved locations. The model given in Eqs [3]-[5] yields a posterior t-distribution on β with location

\begin{equation}
\hat{\beta} = (X_0^T R_0 X_0 + P)^{-1} (X_0^T R_0 V_0 + P \beta_0), \tag{6}
\end{equation}

and scale

\begin{equation}
A_\beta = \frac{1}{n + 2a_\eta} (X_0^T R_0 X_0 + P)^{-1} \times \left(2b_\eta + \beta_0^T P \beta_0 + V_0^T R_0 V_0 \right) \nonumber
- \beta^T (X_0^T R_0 X_0 + P) \hat{\beta}. \tag{7}
\end{equation}

Let V be a vector of unknown speeds that we would like to estimate at m new locations. Suppose that these locations are associated with the known $m \times p$ covariate matrix X. Denoting the $m \times m$ spatial correlation encoding matrix for these new points R, and a $m \times n$ matrix that encodes correlation between these points and the original n points as U, one finds that the posterior V is t-distributed with location

\begin{equation}
\hat{V} = X \hat{\beta} - R^{-1} U \left(V_0 - X_0 \hat{\beta}\right) \tag{8}
\end{equation}

and scale

\begin{equation}
A = (X + R^{-1} U X_0) A_\beta (X + R^{-1} U X_0)^T + \frac{1}{n + 2a_\eta} R^{-1} \times \left(2b_\eta + \beta_0^T P \beta_0 + V_0^T R_0 V_0 \right) \nonumber
- \beta^T (X_0^T R_0 X_0 + P) \hat{\beta}. \tag{9}
\end{equation}

One sees from Eq [8] that the mean predicted speed is a sum of a mean term and a spatially correlated term that appears as a convolution. Entries in the convolution term correspond to values of $\eta(s)$ in Eq [5].

We sample from the posterior speed field by using the normal approximation to the t-distribution. Such an approximation is justified since the degrees of freedom in the model is quite large. To sample the m desired speeds we first calculate the Cholesky decomposition $A = LL^T$ [48]. Then we sample a $m \times 1$ vector of independent standard normal values Z. Finally, the vector $V + LZ$ constitutes a sample from the desired distribution.

Finally, we sample predictions of future interface positions at t_{k+1} by solving the eikonal equation with Dirichlet boundary condition $T(s \in \partial\Omega_{t_k}) = t_k$, by fast marching the interface with the sampled speed fields for times $t_k < t \leq t_{k+1}$.

B. Generative model for static image segmentation

With the ability to predict the future position of an interface from its past history, we now turn our attention to extracting information about the interface position from images. At the core of this exercise is a generative computer vision model.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
We model an image probabilistically with normal distributions of intensity values conditional on region:

\[
I(s) \sim \begin{cases}
N\left(\mu_\Omega, \tau_\Omega^2\right) & s \in \Omega \quad \text{(foreground);} \\
N\left(\mu_\Delta, \tau_\Delta^2\right) & s \in \Delta \quad \text{(background).}
\end{cases}
\] (10)

Additionally, we incorporate information about \(\Omega\) as a prior distribution \(p(\Omega)\), and perform inference on the joint posterior \(p(\Omega, \theta | I) \propto p(I | \Omega, \theta)p(\theta | \Omega)p(\Omega) = e^{-U(\Omega, \theta)}\), where \(U(\Omega, \theta)\) is an energy, and \(\theta = [\mu_\Omega, \mu_\Delta, \tau_\Omega^2, \tau_\Delta^2]\) is a vector of the Gaussian image intensity parameters.

In this formulation, \(p(\theta | \Omega)\) represents the prior knowledge of the regional image intensities, and \(p(\Omega)\) represents the prior knowledge of the underlying foreground shape and location. For \(p(\theta | \Omega)\), we use the normal-gamma conjugate prior distribution

\[
p(\theta | \Omega) = N(\mu_\Omega; \mu_\Omega, \tau_\Omega^2) N(\mu_\Delta; \mu_\Delta, \tau_\Delta^2) \propto G(\tau_\Omega^2; a_\Omega, b_\Omega) G(\tau_\Delta^2; a_\Delta, b_\Delta)
\] (11)

with gamma hyper-prior \(a_\Omega, b_\Omega\) over the image-intensity precisions. The parameters \(\mu_\Omega, \mu_\Delta\) are the prior regional mean image intensities, and \(a_\Omega, b_\Omega, a_\Delta, b_\Delta\) are hyperparameters which are set to be weakly informative (all equal to 0.001) unless otherwise stated.

To represent shape-knowledge, we use a kernel density estimate of the distribution of possible shapes embedded as discrete level sets. Let us denote \(\chi_\Omega\) the characteristic function for a region \(\Omega\),

\[
\chi_\Omega(s) = \begin{cases}
1, & s \in \Omega; \\
0, & s \notin \Omega.
\end{cases}
\] (12)

Then, for two shapes \(\Omega\) and \(\Lambda\), embedded as discrete signed distance functions \(\phi_\Omega\) and \(\phi_\Lambda\), we introduce an asymmetric shape divergence

\[
d(\Omega, \Lambda) = \sum_s \left| \chi_\Omega(s) - \chi_\Lambda(s) \right|^{\alpha} \phi_\Lambda(s) \times w_{su} \left[\phi_\Lambda\left(\frac{s + u}{2}\right) \right]^{\alpha},
\] (13)

where the parameter \(\alpha\) represents how severely we penalize shape mismatch. The parameter \(w_{su}\) is one divided by the length of the edge (Euclidean distance between \(s\) and \(u\)), and \(N\) denotes the set of neighboring grid points. We take the grid points \(s\) to lie in the center of each grid cell, and use the eight neighbor system detailed in El Zehiry et al. \[49\], and represented pictorially in Fig.\[2\]. The term \(\phi_\Lambda\left(\frac{s + u}{2}\right)\) refers to the signed distance between the midpoint of the \(s-u\) segment and the boundary of \(\Lambda\). This expression penalizes mismatches between the two shapes, and particularly penalizes protrusions in \(\Omega\) not represented in \(\Lambda\). Given this distance measure, we can define a Gaussian kernel of the form

\[
K(\Omega, \Lambda) = \sqrt{\frac{\tau_\Omega^2}{2\pi}} e^{-\frac{\tau_\Omega^2}{2} d(\Omega, \Lambda)}.
\] (14)

Now, using some available reference shapes \(\{\Omega_j\}_{j=1}^J\) and carefully-chosen weighting coefficients \(w_j\), we can represent a distribution over shapes, \(p_S(\Omega)\) as follows:

\[
p_S(\Omega) \propto \sum_{j=1}^J w_j K(\Omega, \Omega_j).
\]

This representation of the prior is the kernel density estimate (KDE) of the distribution of shapes. Like in Cremers \[41\] and Cremers et al. \[50\], we empirically set \(\tau\) to the following value:

\[
\tau^2 = \left[\sum_{j=1}^J w_j \min d(\Omega_k, \Omega_j) \right]^{-1}.
\] (15)

To impose smoothness on the boundary of \(\Omega\), we additionally assume a prior on the boundary length, \(p(\Omega) \propto e^{-\nu \mathcal{H}(d\Omega)}\), where \(\mathcal{H}(d\Omega)\) is the Hausdorff measure or length of the curve. We use the discrete approximation of this measure found in El Zehiry et al. \[49\]. Finally, we can write our complete prior over \(\Omega\) as follows:

\[
p(\Omega) \propto e^{-\nu \mathcal{H}(d\Omega)} \sum_{j=1}^J w_j K(\Omega, \Omega_j).
\]

We wish to infer the segmentation \(\Omega\) by maximizing the posterior probability relative to \(\Omega\). To this end, we will maximize the logarithm of the posterior, or equivalently, minimize the following energy:

\[
U(\Omega, \theta) = -\log[p(I | \Omega, \theta)p(\theta | \Omega)p(\Omega)] + \frac{1}{2} \sum_{s \in \Omega} \log \left(\frac{2\pi}{\tau_\Omega^2}\right) + \frac{\tau_\Omega^2}{2} (I(s) - \mu_\Omega)^2
\]

\[
+ \frac{1}{2} \sum_{s \in \Delta} \log \left(\frac{2\pi}{\tau_\Delta^2}\right) + \frac{\tau_\Delta^2}{2} (I(s) - \mu_\Delta)^2
\]

\[
+ \nu \mathcal{H}(d\Omega) - \log \sum_{j=1}^J w_j K(\Omega, \Omega_j) - \log p(\theta | \Omega) + \text{const}.
\] (16)

We take an iterative two-step approach to minimizing this energy. Given \(\Omega\), we minimize the energy with respect to \(\theta\) directly by setting the gradient of the energy with respect to \(\theta\) to zero, and solving for \(\theta\) (see O’Hagan et al. \[45\]). Then, given \(\theta\), we find the optimal \(\Omega\) using the majorization-minimization algorithm described in the following section. We repeat this two-step procedure until a stable energy is reached.

C. Majorization-minimization (MM) algorithm

The shape contribution \(\log \sum_{j=1}^J w_j K(\Omega, \Omega_j)\) can make minimization of the energy difficult, since its formulation involves a sum within a logarithm. To separate the contributions from
the reference shapes \(\Omega_j \), we will derive a surrogate function with separated terms. A function \(f(x|x_k) \) is said to majorize a function \(g(x) \) at \(x_k \) if \(g(x) \leq f(x|x_k), \forall x, \) and if \(f(x_k) = g(x_k|x_k) \) \(^{[5]}\). We perform inference by iteratively minimizing \(\Omega^{(n+1)} = \arg \min_{\Omega} Q(\Omega|\Omega^{(n)}) \), where \(Q(\Omega|\Omega^{(n)}) \) majorizes Eq\(^{[16]}\) Noting that \(-\log(\cdot) \) is convex, we will use a definition for convexity \(f(\sum \alpha_i t_i) \leq \sum \alpha_i f(t_i) \), to show that for any segmentation \(\Omega^{(n)} \), the following holds:

\[
- \log \sum_{j=1}^{J} w_j K(\Omega, \Omega_j) \leq - \sum_{j=1}^{J} w_j K(\Omega^{(n)}, \Omega_j) \log K(\Omega, \Omega_j) + \text{const}
\]

Substituting Eq\(^{[14]}\),

\[
= - \sum_{j=1}^{J} \frac{w_j K(\Omega^{(n)}, \Omega_j)}{\sum_{k=1}^{J} w_k K(\Omega^{(n)}, \Omega_k)} \log K(\Omega, \Omega_j) + \text{const}
\]

Following El Zehiry et al. \(^{[49]}\), we begin by expressing the energy given in Eq\(^{[18]}\) as a function of the vertices \(V \) and edges \(E \) of a graph \(G = (V, E) \):

\[
U(G) = \sum_{s \in V} U_V(s) + \sum_{(s,u) \in E} U_E(s, u).
\]

From equation Eq\(^{[18]}\) we find that

\[
U_V(s) = \frac{1}{2} \left[\log \left(\frac{2\pi}{\pi_{\Omega}} \right) + \tau_1^2(\Omega) s - \mu_{\Omega} \right]^2 \chi_{\Omega}(s)
\]

\[
+ \frac{1}{2} \left[\log \left(\frac{2\pi}{\pi_{\Delta}} \right) + \tau_2^2(\Omega) s - \mu_{\Delta} \right]^2 (1 - \chi_{\Omega}(s))
\]

\[
+ \frac{\tau_2^2}{2} \sum_{j=1}^{J} \frac{w_j K(\Omega^{(n)}, \Omega_j)}{\sum_{k=1}^{J} w_k K(\Omega^{(n)}, \Omega_k)} d(\Omega, \Omega_j)
\]

Substituting Eq\(^{[14]}\),

\[
= \frac{\pi \tau^2}{16w_{\Omega}} \left[\sum_{j=1}^{J} w_j K(\Omega^{(n)}, \Omega_j) \left| \phi_{\Omega_j}(\alpha) \right|^2 \left(1 - \chi_{\Omega_j}(u) \right) + \chi_{\Omega_j}(u) \left(1 - \chi_{\Omega_j}(s) \right) \right]
\]

In Eq\(^{[20]}\) \(w_{\Omega}(s, u) \) is an edge weighting that approximates the Hausdorff measure of the boundary \(^{[49]}\). In the eight-neighbor system we use, it takes values of \(w_{\text{adj}} \pi/8 \). Weighting of edges in this manner helps enforce homogeneity of labeling between neighboring spatial points. It is of note that the energy depends upon the distance functions for the kernel density reference shapes, and not the evolving segmentation. If it were to depend on the signed distance function of the segmentation, it would not be possible to write the energy in a form minimizable in a graph cuts framework, thus necessitating the use of an asymmetric shape distance like the one in Eq\(^{[13]}\)

To minimize the energy, we augment our pixel lattice graph with two special nodes. In the language of graph cuts, these nodes are known as the source and sink. For our purposes, the labeling of source and sink are arbitrary since we are dealing with an undirected graph. We will call one of these vertices \(v_{\Omega} \), and the other one \(v_{\Delta} \). The existence of an edge between a pixel \(s \) and \(v_\Omega \) will represent segmentation of \(s \) into \(\Omega \). We then connect each pixel node directly to both \(v_\Omega \) and \(v_\Delta \), weights along a cut, and a max-flow min-cut algorithm finds the cut with the lowest cost. To use graph cuts for image segmentation, we must express our energy function in terms of edge-weights on a graph. We will describe an image as a connected graph, where each pixel represents a node, and edges exist between neighboring nodes (Fig 2). Note that edges in this context refer to connections between nodes in a graph, and not to edges in an image. We want to infer an unknown two-coloring on the nodes of the graph that represents inclusion of a node \(s \) into either the foreground set \(\Omega \), or the background set \(\Delta \). Following El Zehiry et al. \(^{[49]}\), we begin by expressing the energy given in Eq\(^{[18]}\) as a function of the vertices \(V \) and edges \(E \) of a graph \(G = (V, E) \):

\[
U(G) = \sum_{s \in V} U_V(s) + \sum_{(s,u) \in E} U_E(s, u).
\]
and weight these new edges as follows:

\[
w(s, v_\Omega) = \frac{1}{2} \left[\log \left(\frac{2\pi}{\tau_\Omega^2} \right) + \tau_\Omega^2 (I(s) - \mu_\Omega)^2 \right] + \frac{\tau^2}{2} \sum_{j=1}^{J} \sum_{k=1}^{J} w_{jk} K(\Omega(s), \Omega_k) |\phi_{\Omega_j}(s)|^\alpha,
\]

\[
w(s, v_\Delta) = \frac{1}{2} \left[\log \left(\frac{2\pi}{\tau_\Delta^2} \right) + \tau_\Delta^2 (I(s) - \mu_\Delta)^2 \right] + \frac{\tau^2}{2} \sum_{j=1}^{J} w_{jk} K(\Omega(s), \Omega_k) |\phi_{\Omega_j}(s)|^\alpha (1 - \chi_{\Omega_j}(s)),
\]

where \(u \) is a grid-neighbor of \(s \). Our surrogate energy is now minimized by finding the minimum cut of the graph. For details on how to perform this optimization, we refer the reader to Boykov and Kolmogorov [52]. To minimize the original energy function, one iteratively computes the graph-cut minimum within the MM algorithm described in section II-C. It is of note that \(\theta \) does not significantly change if the segmentation labels do not significantly change. Therefore, it is computationally beneficial to recompute \(\theta \) after each of the first few MM iterations, and only recompute it if the labels undergo further large changes.

E. Bayesian filtering

We now have all the pieces needed to perform sequential Bayesian estimation of the interface positions. In section II-A we described our model for predicting the speed and hence position of the interface. In section II-B, we showed how one can use a kernel density estimate of the position of the boundary in an image to craft an energy functional that when minimized yields the position of the boundary. In sections II-C and II-D, we provided an iterative method of minimizing the energy functional. We now describe how to combine these components together into a Bayesian filter. Let \(\Omega_{k|k-1} \) be the random variable \(\Omega_k \) conditional on all images up to and including time \(t_{k-1} \). Then for each frame \(I_k \) in an image sequence, after initialization, our Bayesian filter iterates between two steps, predict and update.

Initialization: To initialize our segmentation method, one needs an initial segmentation at the first image frame. Possessing prior shape knowledge, one may initialize the segmentation with a set of prior shape templates [41], and then minimize Eq [16] directly. In the absence of shape information, one may create a non-informational shape prior by defining a single arbitrary reference shape, and setting \(\tau^2 \rightarrow 0 \). This procedure reduces the energy function to pure intensity-based graph cuts.

Predict: We draw samples of segmentations \(\Omega_{k|k} \) from its posterior, and infer the GMRF speed field associated with each segmentation. Then for each segmentation sample, propagate the associated interface through samples from its speed field to generate an ensemble of predictive positions for \(\Omega_{k+1|k} \).

The posterior of \(\Omega_{k|k} \) is defined by an energy

\[
U(\Omega_{k|k}, \theta_k) = \frac{1}{2} \sum_{s \in \Omega_{k|k}} \left[\tau_{\Omega_{k|k}}^2 \| I_k(s) - \mu_{\Omega_{k|k}} \|^2 - \log \left(\tau_{\Omega_{k|k}}^2 \right) \right] + \frac{1}{2} \sum_{s \in \Delta_{k|k}} \left[\tau_{\Delta_{k|k}}^2 \| I_k(s) - \mu_{\Delta_{k|k}} \|^2 - \log \left(\tau_{\Delta_{k|k}}^2 \right) \right] + \nu H(\partial \Omega_{k|k}) - \log p(\theta_k \| \Omega_{k|k}) - \log \sum_{j=1}^{J} \sum_{l=1}^{L} W_j K(\Omega_{k|k}, \Omega_{k|k-1})^J.
\]

for some known weighting coefficients \(W_j \) and reference shapes \(\Omega_{k|k-1} \).

We sample segmentations from the posterior by using importance sampling [53]. Importance sampling obtains samples from a difficult target distribution \(f(x) \) by sampling from an easier importance distribution \(g(x) \). With samples \(x_i \sim g(x) \), one approximates expectations of a function \(h(x) \) under the distribution \(f(x) \) by first calculating the weights \(W_i = f(x_i)/g(x_i) \), and then approximating the expectation by \(E[h(x)] = \sum W_i h(x_i) / \sum W_i \). To approximate the target distribution itself, one can combine kernel density estimation and importance sampling to deduce an approximating distribution of the form \(f(x) = \sum W_i K(x, x_i)/\sum W_i \), where \(K(\cdot, \cdot) \) is a kernel function.

We sample a set of current interface positions \(\{ \Omega^{(j)}_{k|k} \}_{j=1}^{J} \) as the conditional maximum-a-posteriori segmentations under modified length penalties \(\nu^{(j)} \), where each \(\nu^{(j)} \) follows an exponential distribution with rate parameter \(1/\nu \). With each \(\nu^{(j)} \), we modify the length penalty in Eq [24] by setting \(\nu \rightarrow \nu^{(j)} \) and minimize the resulting energy to obtain a sample interface position \(\Omega^{(j)}_{k|k} \) with associated image intensity parameters \(\theta^{(j)}_k \). Conditional on each \(\Omega^{(j)}_{k|k} \), we infer the associated stochastic speed field \(V^{(j)}_{k|k} \), which follows a multivariate \(t \)-distribution with scale matrix \(A^{(j)}_{k|k} \). To infer this field we first linearly interpolate arrival times of the interface from the set of wave positions. Then we calculate the past speeds according to the eikonal equation using second-order upwind finite differences [42], giving us a vector of known speeds \(V_0 \). Finally, we input the resulting speeds into the GMRF model of section II-A where Eqs [6][7][8] and [9] provide us with the parameters of the resulting multivariate \(t \)-distribution. Then, from each GMRF, we draw a fixed number of samples (we used 16). Thus, for each sampled interface position \(\Omega^{(j)}_{k|k} \), we have a collection of samples of the interface speed \(\{ V^{(j)}_{k|k} \}_{j=1}^{J} \).
With our states \(\{ \Omega^{(j)}_{k+1}, V^{(j)}_{k+1} \} \) at \(t_k \), and the eikonal equation, we may now predict the location of the boundary at \(t_{k+1} \) by propagation of each pair of interface and speed field through Eq. 1 to calculate \(\Omega^{(j)}_{k+1} \). This procedure is accomplished by using the fast marching method [6], starting with an initial position \(\Omega^{(j)}_{k+1} \) at \(t_k \), and solving with speeds \(V^{(j)}_{k+1} \) until \(t = t_{k+1} \). The result is a set of predictive samples \(\{ \Omega^{(j)}_{k+1} \}_{j=1}^{J} \) \(\{ V^{(j)}_{k+1} \}_{j=1}^{J} \) of the interface location at time \(t_{k+1} \), given the information up to time \(t_k \).

The weights in Eq. (24) are then given by the importance sampling weights

\[
W_j = \exp \left[\frac{U_j}{\nu} - U (\Omega^{(j)}_{k+1}, \theta^{(j)}_{k+1}) \right],
\]

normalized to sum to 1. Here, \(U \) is the energy function given in Eq. (24) with the original shape penalty \(\nu \). In Eq. (16), we took the prior on \(\Omega \) to be the kernel density estimate of reference shapes. We can compute this representation of the prior by setting \(P(\Omega) \propto \sum_j W_j K(\Omega - \Omega^{(j)}_{k+1}) \). With our prior constructed, we now have all the components necessary to specify the posterior distribution for time \(t_{k+1} \).

Update: When the new observation at time \(t_{k+1} \) comes in, one updates his prediction of the state at \(t_{k+1} \) by minimizing the posterior energy \(U(\Omega_{k+1}, \theta_{k+1}) \). This update is as simple as relaxing the energy (Eq. (24) with \(k \) incremented by one) by the MM procedure described in section II-C iterated with estimation of the image intensity statistics. We initialize the MM algorithm to start at the state obtained by propagating the maximum-a-posteriori \(\Omega_{k+1} \) according to its maximum-a-posterior speed field (Eq. (8)), and initially inferring the image intensity statistics conditional on this state.

III. Application to Biomedical Images

We implemented the segmentation and speed interpolation method given in previous sections as a Java-based plug-in for ImageJ, the image manipulation and analysis package from NIH [54]. We chose UJMP [55], a LGPL licensed fast matrix library, to perform all matrix operations. For graph-cuts optimization, we modified Fiji’s [56] implementation of the max-flow min-cut algorithm by Boykov and Kolmogorov [52] for our needs. In these examples, the shape mismatch penalty was set to \(\alpha = 2 \), and the length penalty was set to \(\nu = 20 \), unless otherwise stated. Convergence to a minimum energy typically occurred within five to nine MM iterations. It is worthy to note that one need not recompute the image intensity statistics \(\theta \) at each step if only a small number of labels have changed. We only recalculated the image intensity statistics in the first three iterations, where convergence was most rapid. All segmentations were performed on sequences of 320 × 240 images.

A. Synthetic image sequence

To test the ability of our method to recover a known interface from images, we applied our method to a sequence of synthetic images (Fig. 4). We defined a “ground truth” speed field within a 320 × 240 pixel spatial field using the UCLA logo (Fig. 5, left), with speeds of 10 pixels/frame and 6 pixels/frame inside and outside of the letters, respectively. Then, we advected a boundary traveling from the lower right of the field until it crossed the entire field (total of 90 frames). From this set of interface positions, we generated a series of images, with mean intensities of 3 inside the region traversed by the boundary, and 0 outside, with a variance of 9 (Fig. 4). We used weakly informative image intensity and uninformative initial shape priors to segment the resulting images. To estimate the speed, we used a weakly informative prior speed centered at 8 pixels/frame (weakly informative implies that all Gamma hyperparameters are set to 0.001).

The boundary that we found is in good accord with the ground truth. Our regularization is strong enough to provide robustness to noise, yet, not so strong that relatively large deformations are not detected. The ground truth image undergoes robust changes in topology that are faithfully reproduced in our segmentation results. Fig. 5 shows our reconstruction of the ground truth interface speed, performed using second-order upwind finite differences. The original UCLA logo is clearly visible in the reconstructed speed (right). There is noisiness in the reconstruction due to the indeterminacy of the inversion of the eikonal equation (Eq. (1)), however we obtain an accurate reconstruction. The mean reconstructed speed is \(9.8 \pm 1.5 \) pixels per frame within the UCLA lettering, and \(6.0 \pm 0.7 \) pixels per frame outside of the UCLA lettering; these values are within 5% of the original speed field.

In Fig. 6 we show that even large deformations far from the predicted mean shape are detected, typically in very few iterations. Here, protrusions in the front are developing such that the shape of the front is significantly different from the mean predicted shape. After a single MM iteration, the algorithm snaps to the protrusion. This behavior is a result of the smoothness and large support of the shape divergence measure (Eq. (13)). Even protrusions that are improbable under the motion model can be stabilized by the likelihood.

B. Cortical Spreading Depression (CSD)

Optical intrinsic signal (OIS) imaging is a simple method of visualizing physiological processes without the use of dyes or tracers. Instead, OIS captures changes in the sample’s intrinsic optical reflectance. Because of its simplicity and versatility, OIS is used for in vivo imaging applications in neuroscience. During CSD, there are large hemodynamic or blood-related, changes in cortical tissue [57, 58]. Conveniently, in cortical brain tissue under visible light, changes in blood volume and blood oxygen saturation constitute the majority of the OIS signal. The CSD wave appears as a low contrast brightening of the tissue, visible in inter-frame difference images, though due to the diffuse signal, is time-consuming for even a trained practitioner to trace.

Using the notation of section II-B, we treated the spatial extents of the CSD wave as foreground regions \(\Omega_k \) in an image sequence \(\{ O_k \}_{k=0}^K \). We modeled each inter-frame difference \(I_k = O_{k+1} - O_k \) image as a conditional Gaussian mixture like in section II-B. As prior information, the wavefront is
known to travel at approximately $1 - 5$ millimeters per minute. We incorporated this information by setting a prior mean wave speed of 3 millimeters per minute, with variance of 1 millimeters2 per minute2 (we set $a_\eta = b_\eta = 1$). As in the synthetic image sequence application, we used uninformative initial shape priors.

We tested our method on a real set of CSD images acquired from two separate experiments on separate C57Bl/6J mice. The mice were approved for experiments in accordance with University of California, Los Angeles Animal Research Committee Guidelines. The mice had their skulls exposed under anesthesia, and a rectangular section of the parietal bone (1 mm from the sagittal suture, temporal ridge, lambdoidal suture and coronal suture) was thinned to transparency. Burr-holes were drilled proximal to the imaging field to allow for placement of stimulating electrodes. After allowing the animal to rest, the experimenter induced CSD by passing electric current through the stimulating electrodes. VGA-resolution (640×480) images were collected at a frequency of 1Hz, in 8-bit greyscale, under white light. The imaging field was approximately $3.2 \text{mm} \times 2.4 \text{mm}$, with each pixel representing approximately a $5 \mu\text{m} \times 5 \mu\text{m}$ square. Before analysis, to save computation time, we rescaled each image to a quarter of its original size by bilinear interpolation (to 320×240).

CSD segmentation results are shown in Fig 7. For comparison, we also provide the results of segmentation done with graph cuts in the absence of shape prior 49. Our tracking method is able to regularize against the noise and random heterogeneity that is typical of these in-vivo experiments. In the absence of a prior, the interface location is not as well defined, and graph cuts fails to select the entire CSD region.

In Fig 8 we examine the results of our model under non-ideal conditions. In this experiment, biological movement has caused the presence of a vascular distraction in the difference images. The images in the top row show frame-by-frame segmentation in the absence of shape priors, where the vascular system is causing formidable interference. Using our method, we achieve increasingly better segmentations when increasing the shape mismatch penalty α, though $\alpha = 2$ still
Fig. 7. Segmentation of real in-vivo CSD data (Left→Right) CSD shown propagating, $\delta t = 7s$. Top: Original unsegmented inter-frame differences showing CSD-related changes in blood signal. Second row: Results from our segmentation method, where we track the moving front probabilistically. Third row: Segmentation of the spreading region done without shape priors.

Fig. 8. Adjusting regularization by adjusting the shape penalty parameter (Left→Right) and (Top→Bottom) Biological movement during imaging causes artifacts in the difference image. Failure to adjust for the movement results in less than ideal data. Increasing α, the shape mismatch penalty, can compensate for poorly acquired image data. Our method is able to track the moving front even as it is partially occluded. Top: segmentation without shape prior. Second row $\alpha = 2$. Third row: $\alpha = 3$. Fourth row: $\alpha = 4$. $\delta t = 2s$.

works reasonably well. Increasing α increases the weight of the speed-based regularization relative to the likelihood. This parameter offers flexibility for tuning the method for data sets with increasing random heterogeneity.

C. Wound healing assays

Another application we explore is the tracking of a collapsing boundary. One specific example of this type of system arises in in vitro assays of wound healing. In the typical wound healing assay, a layer of cells is grown to confluency on a substrate. A portion of the cell layer is then removed, either by scratching, lifting off a localized region of cells, or removing a constraint confining the monolayer [59]. The dynamics of how the cells refill the bare substrate is then studied typically with bright or dark-field light microscopy under a variety of physical and chemical conditions. While the biological process is complex, involving chemical signaling pathways, mediated by mechanical interactions with the elastic substrate and neighboring cells [60], the main observable is the moving wound edge.

Both cell migration and cell proliferation can occur. [61], and as more quantitative studies of these types of assays emerge [62], tracking the spatio-temporal dynamics of cells and their proliferation will become critical. In response to a wound or free space in which to migrate, the cells near the edge increase their motility to attempt to cover the wound. The motion of the wound boundary appears to be largely monotonic. However, without additional experimental imaging modalities such as fluorescent labeling of membranes, accurate tracking of the wound edge can be difficult due to low contrast, boundaries with other cells, and extraneous material (such as floating dead cells) in the image field.

Our statistical approach for tracking the moving boundary of a cell monolayer was tested on an in vitro wound healing assay. Fig [9] shows segmentations on a series of sobel filtered [54] images of a shrinking circular wound that was induced in a monolayer of epithelial cells. Pre-wounding, the epithelial cells were grown to confluence on extracellular matrix substrate. Bright-field images were then taken of the epithelial cells migrating to fill the circular wound region. In these images, the wound region and the healed region are distinguished by the lack and presence of cells. Cells in the field appear dark at their boundaries, and bright in their bodies. In this application, we treat the wounded region as Ω. As the wound heals, it undergoes robust changes in shape. Our segmentation method accurately tracked the boundary of the wound. For these segmentations, where we knew the location of the initial wound circle, we used an informative shape prior with the known reference shape, and set $\tau^2 = 1$. We used a weakly informative prior mean speed centered at -4
Fig. 9. Segmentation of wound healing assays featuring robust shape changes (Left→Right) and (Top→Bottom) Wound-healing time stills. Segmentation performed on the Sobel filter (shown) of the original image sequence, which is well-modeled by the Gaussian mixture of section II-B. In this application, the boundary is moving inward, while the shape of the inner region is undergoing large changes. The segmentation method works well even for non-convex shapes. δt = 30 min. We are grateful to Prof. C.-L. Guo, Caltech Bioengineering for these images. Resolution: 320 × 240 pixels/frame. In this application, the speed of the front V is strictly negative.

D. Validation

We evaluated the accuracy of our segmentation method by comparing results from our method against the results of human-assisted segmentations for the synthetic image sequence (Fig 4) and the CSD image sequence (Fig 7). In both cases, we compute the mismatch between two segmentations

\[
\text{Error} = \frac{\text{number of mismatching pixels}}{\text{mean boundary length of segmentations}}.
\]

The resulting quantity has an interpretation as the average thickness in pixels of the mismatched region.

For the synthetic image sequence, where the ground truth is available, we compared the error of segmentations made using our method to error from human-assisted segmentations. Fig 10 depicts the mismatch from ground truth for segmentations on the synthetic image sequence of Fig 4. For this data set, it is clear that our segmentation method outperforms human segmentation, by approximately a factor of two.

For the cortical spreading depression images of Fig 7 where the ground truth is not available, we compared human segmentation to our automated segmentations (Fig 11). Our results are in good agreement with manually-segmented results, good to within 1.7 ± 0.5 pixels. By comparison, the humans segmentations disagreed with each other by 1.4 ± 0.4 pixels. These data demonstrate the ability of our method to perform as-well-as or better than manual segmentation.

Fig. 10. Comparison of results against laborious manual human segmentation of synthetic images The accuracy of our method’s segmentation of the synthetic image sequence (for the six frames shown in Fig 4) compared to the accuracy of three humans. The error plotted in the y-axis is the average number of misclassified pixels per boundary-length, where boundary-length is the average of the lengths of the ground truth and segmented boundary. Our method differed from the ground truth by 0.30 ± 0.10 pixels. The humans performed significantly worse with error of 0.61 ± 0.14 pixels.

Fig. 11. Comparison of results against laborious manual human segmentation of in-vivo CSD images Deviation of human segmentations from the results of our automated approach for the image sequence shown in Fig 7. The results from our segmentation method agreed with the results from the manual segmentations to within 1.7 ± 0.6 pixels.
IV. Discussion

We have demonstrated a framework for simultaneous segmentation and inference of the dynamics of monotonically traveling boundaries in image sequences. Our method is simple, generalizable, and easily extended to a wide variety of applications. The novelty of our method is in bringing level-set based interface modeling into a statistical estimation framework, where inference can occur using graph cuts. In the process, we have developed a theory for including shape priors into the graph cuts method using an MM algorithm. We have demonstrated the efficacy of our method in solving the boundary tracking problem for two unrelated biomedical applications, and is able to recover a ground truth speed pattern for a synthetically generated image sequence.

Since we developed our method from the ground up with statistical theory in mind, it can be easily extended or modified to suit a wide range of applications. Being modular in design, it is easy to alter particular components of our method while leaving others unchanged. For instance, one may choose to modify the shape distance we introduce in Eq (13) to suit a particular application. There is much prior work on shape distances in the level set literature, and the graph cut segmentation community would greatly benefit from more research on how to incorporate shape knowledge.

Since our method is model-based, it is fairly easy to predict when performance suffers. In particular, when the image pixel intensities are poorly described by the likelihood model of section II-B or when the speed of the interface is poorly modeled as the smooth Gaussian process of section II-A. In many cases, success of the method depends on the choice of shape penalty exponent α. In some sense, α controls the degree of regularization done by the recursive shape priors. If α is set too large, the segmenter will tend to favor the predicted interface positions over the data, ignoring real deformations in the interface. Conversely, if α is set too small, the regularization may not be sufficient, and the segmenter is more likely to pick up noise in the image. For example, in Fig 8 increasing the shape penalty parameter to $\alpha = 4$ improved the tracking of the interface in the presence of distractors. In general, $\alpha = 2$ worked well for our examples.

Perhaps the aspect of our method that would benefit the most from future research would be the spatial interpolation method we use to sample fluctuations in interface speed. The Gaussian process model, while theoretically clean, is computationally complex. Yet, the Bayesian nature of this method allows for the application of natural Bayesian model evaluation and inference methods. In particular, future development will focus on Bayesian model selection of competing speed models. Finally, we would like to note that extension of our method to non-monotonically moving is theoretically straightforward. One need only implement the time-dependent Gaussian process interpolation of Sahu et al. [46] to predict speeds, and use the level-set equation rather than the eikonal equation to describe the motion.

V. Acknowledgements

We thank Lydia L. Shook for performing the CSD experiments, Berta Sandberg for her input in the area of segmentation, and Tanye Y. Tang for helping to adapt the Vaswani et al. [23] Matlab code for use on the image sequences in this manuscript. We are grateful to Prof. C.-L. Guo, Caltech Bioengineering for the wound healing assay images. JC acknowledges support by grant number T32GM008185 from the National Institute of General Medical Sciences. JC and TC also acknowledge support from the the National Science Foundation through grants DMS-1032131 and DMS-1021818, and from the Army Research Office through grant 58386MA. KCB acknowledges support from the National Institutes of Health (NINDS NS059072 and NS070084) and the Department of Defense (CDMRP PR100060).

REFERENCES

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

